
PHP 7: What To Expect
Lorna Mitchell, PHPUK 2016

Slides available online, help yourself:
http://www.lornajane.net/resources

http://www.lornajane.net/resources

Versions of PHP
Version Support until Security fixes until
PHP 5.5 (expired) 10th July 2016
PHP 5.6 31st December 2016 31st December 2018
PHP 7.0 3rd December 2017 3rd December 2018

see also: http://php.net/supported-versions.php

http://php.net/supported-versions.php

PHP 7 Is Fast

PHP 7 Is Fast

Why PHP 7 Is Fast
• Grew from the phpng project
• Influenced by HHVM/Hacklang
• Major refactoring of the Zend Engine
• More compact data structures throughout
• As a result all extensions need updates

• http://gophp7.org/gophp7-ext/

Rasmus' stats: http://talks.php.net/fluent15#/6

http://gophp7.org/gophp7-ext/
http://talks.php.net/fluent15#/6

Abstract Syntax Trees
PHP 7 uses an additional AST step during compilation

This gives a performance boost and much nicer architecture

Abstract Syntax Trees
Example code:
1 $a = rand(0,1);
2
3 if($a) {
4 echo "Heads";
5 } else {
6 echo "Tails";
7 }

Abstract Syntax Trees
Tokenized PHP:
T_OPEN_TAG: <?php

T_VARIABLE: $a
T_WHITESPACE:
=
T_WHITESPACE:
T_STRING: rand
(
T_LNUMBER: 0
,
T_LNUMBER: 1
)
;

Abstract Syntax Trees
Abstract syntax tree representation:
AST_STMT_LIST
 AST_ASSIGN
 AST_VAR
 a
 AST_CALL
 AST_NAME
 rand
 AST_ARG_LIST
 0
 1

New Features

Combined Comparison Operator
The <=> "spaceship" operator is for quick greater/less than
comparison.

1 echo 2 <=> 1; // 1
2 echo 2 <=> 3; // -1
3 echo 2 <=> 2; // 0

Ternary Shorthand
Refresher on this PHP 5 feature:
1 echo $count ? $count : 10; // 10
2 echo $count ?: 10; // 10

Null Coalesce Operator
Operator ?? is ternary shorthand (?:) but with isset().

1 $b = 16;
2
3 echo $a ?? 2; // 2
4 echo $a ?? $b ?? 7; // 16

Type Hints
PHP 5 has type hinting, allowing you to say what kind of
parameter is acceptable in a method call.

1 function sample(array $list, $length) {
2 return array_slice($list, 0, $length);
3 }

Type Hints
If we use the wrong parameter types, it errors
1 print_r(sample(3, 3));

PHP 5 error:
Catchable fatal error: Argument 1 passed to sample() must be of the type array,
integer given

PHP 7 error:
Fatal error: Uncaught TypeError: Argument 1 passed to sample() must be of the type
array, integer given

Scalar Type Hints
PHP 7 lets us hint more datatypes:
• string
• int
• float
• bool

Scalar Type Hints
We can amend our code accordingly:
1 function sample(array $list, int $length) {
2 return array_slice($list, 0, $length);
3 }

And then call the method:
1 $moves = ['hop', 'skip', 'jump', 'tumble'];
2 print_r(sample($moves, "2")); // ['hop', 'skip']

Scalar Type Hints
To enable strict type check, add this line in the calling context:
declare(strict_types=1);

Return Type Hints
We can also type hint for return values.
1 function sample(array $list, int $length): array {
2 if($length > 0) {
3 return array_slice($list, 0, $length);
4 }
5 return false;
6 }

Beware that we can't return false or null.

Return Type Hints
This works:
1 $moves = ['hop', 'skip', 'jump', 'tumble'];
2 print_r(sample($moves, "2")); // ['hop', 'skip']

This errors:
1 $moves = ['hop', 'skip', 'jump', 'tumble'];
2 print_r(sample($moves, 0));

Fatal error: Uncaught TypeError: Return value of sample() must be of the type array,
boolean returned

Exceptions and Errors
PHP 5 exceptions are alive, well, and excellent

Exceptions in PHP 7
They now implement the Throwable interface

Errors in PHP 7
Some errors are now catchable via the Error class

Catching Exceptions and Errors
 1 function sample(array $list, int $length) {
 2 throw new Exception("You fail");
 3 }
 4
 5 try {
 6 $a = sample(1,1);
 7 } catch (Exception $e) {
 8 echo "you hit the exception line";
 9 } catch (TypeError $e) {
10 echo "you passed the wrong arguments"; }

Catch Method Calls on Non-Objects
Does this error look familiar?
1 $a = 6;
2 $a->grow();

PHP 5:
Fatal error: Call to a member function grow() on integer

PHP 7:
Fatal error: Uncaught Error: Call to a member function grow() on integer

Catch Method Calls on Non-Objects
PHP 7 allows us to catch Errors as well as Exceptions
1 try {
2 $a = 6;
3 $a->grow();
4 } catch (Error $e) {
5 echo "(oops! " . $e->getMessage() . ")\n";
6 // now take other evasive action
7 }

Newer bits of PHP will use this new Error mechanism

Anonymous Classes
Start with this (normal) class:
1 class Logger {
2 public function log($message) {
3 echo $message . "\n";
4 }
5 }
6
7 $log1 = new Logger();

Anonymous Classes
Now consider this anonymous class:
1 $log2 = new class extends Logger {
2 public function log($message) {
3 echo date('[d-M-Y] ')
4 . $message . "\n";
5 }
6 }

Anonymous Classes
Compare the two in use:
1 $log1->log("one line");
2 $log1->log("another line");
3 $log2->log("one line");
4 $log2->log("another line");

one line
another line
[18-Feb-2016] one line
[18-Feb-2016] another line

Random* Functions
PHP 7 introduces a couple of neat randomness functions:
• random_bytes() — Generates cryptographically secure

pseudo-random bytes
• random_int() - Generates cryptographically secure

pseudo-random integers

For PHP <7 use https://github.com/paragonie/random_compat

https://github.com/paragonie/random_compat

New JSON Extension
PHP 7 includes the JSOND extension.

No major changes but:
• has a friendly PHP-compatible license
• performs better than the alternatives

Upgrading to PHP 7

Uniform Variable Syntax
This is a feature as well as a gotcha.
• Good news: more consistent and complete variable syntax

with fast parsing
• Bad news: some quite subtle changes from old syntax when

dereferencing or using $$
• If in doubt, add more { and }

RFC: https://wiki.php.net/rfc/uniform_variable_syntax

https://wiki.php.net/rfc/uniform_variable_syntax

Phan
Static analyser: https://github.com/etsy/phan
• reads code and PHPDoc comments
• warns about BC breaks including uniform variable syntax

issues
• warns you about undeclared things
• checks parameter types

Has a great guide to codebase wrangling:
http://lrnja.net/1W2Gjmb

https://github.com/etsy/phan
http://lrnja.net/1W2Gjmb

Foreach
Check that you're not relying on any foreach() weirdnesses
• The array pointer will no longer move, look out for use of
current() and next() inside a foreach() loop

• Don't assign to the thing you're looping over, the behaviour
has changed

RFC: https://wiki.php.net/rfc/php7_foreach

https://wiki.php.net/rfc/php7_foreach

Hex Numbers in Strings
PHP 7 doesn't detect hex numbers when casting strings to
numeric values.

Deprecated Features
You should expect things that trigger E_DEPRECATED in older
versions of PHP to be removed.

Caveats:
• The RFC to remove things was agreed but it hasn't been

implemented yet
• The mysql_* functions really are removed
• PHP 4 constructors are less removed than you'd expect them

to be

Upgrading to PHP 7
Step 1: Upgrade to PHP 5.5 or 5.6.

Upgrading to PHP 7
Step 1: Upgrade to PHP 5.5 or 5.6.

Most PHP 5 code will just work with a few pitfalls to look out for.

You probably want to run composer update while you're at it

Upgrading to PHP 7
There are fabulous comprehensive instructions
http://php.net/manual/en/migration70.php

Making the business case for PHP 7
• calculate hardware cost saving
• calculate developer time required

Done :)

http://php.net/manual/en/migration70.php

Acquiring PHP 7
Windows users: get a new binary

Linux users:
• wait for your distro to update
• use an alternative source (e.g. http://lrnja.net/1PIPw2M)
• compile it yourself

http://lrnja.net/1PIPw2M

The Future

The Future
• PHP 5.6 support has been extended

• Support until 31st December 2016
• Security fixes until 31st December 2018

• PHP 7.0 is safe to run
• PHP 7.1 looks even better

(see also http://php.net/supported-versions.php)

http://php.net/supported-versions.php

Questions?
Feedback please! https://joind.in/talk/0a501

Slides are on http://lornajane.net
(related blog posts are there too)

Contact me
• lorna@lornajane.net
• @lornajane

https://joind.in/talk/0a501
http://lornajane.net
mailto:lorna@lornajane.net

Bonus Content

No E_STRICT
Replaced with either E_DEPRECATED or E_NOTICE or E_WARNING

Simplifies error stuff in PHP 7

Multiple Import Declarations
Syntactic sugar perhaps, but very readable code. Start with:
1 use Symfony\Component\Form\Form;
2 use Symfony\Component\Form\FormError;
3 use Talk\TalkDb;
4 use Talk\TalkApi;
5 use User\UserDb;
6 use User\UserApi;
7

Multiple Import Declarations
Syntactic sugar perhaps, but very readable code. Now reads:
1 use Symfony\Component\Form\{Form, FormError};
2 use Talk\{TalkDb, TalkApi};
3 use User\{UserDb, UserApi};
4

Group your imports, also supports aliases.

	Versions of PHP
	PHP 7 Is Fast
	PHP 7 Is Fast
	Why PHP 7 Is Fast
	Abstract Syntax Trees
	Abstract Syntax Trees
	Abstract Syntax Trees
	Abstract Syntax Trees
	New Features
	Combined Comparison Operator
	Ternary Shorthand
	Null Coalesce Operator
	Type Hints
	Type Hints
	Scalar Type Hints
	Scalar Type Hints
	Scalar Type Hints
	Return Type Hints
	Return Type Hints
	Exceptions and Errors
	Exceptions in PHP 7
	Errors in PHP 7
	Catching Exceptions and Errors
	Catch Method Calls on Non-Objects
	Catch Method Calls on Non-Objects
	Anonymous Classes
	Anonymous Classes
	Anonymous Classes
	Random* Functions
	New JSON Extension
	Upgrading to PHP 7
	Uniform Variable Syntax
	Phan
	Foreach
	Hex Numbers in Strings
	Deprecated Features
	Upgrading to PHP 7
	Upgrading to PHP 7
	Upgrading to PHP 7
	Acquiring PHP 7
	The Future
	The Future
	Questions?
	Bonus Content
	No E_STRICT
	Multiple Import Declarations
	Multiple Import Declarations

